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ABSTRACT: The health effects of inhaled electronic cigarette (e-
cigarette) flavoring compounds are largely unknown. Earlier reports of
their chemical reactivity have been conflicting, with some claiming, for
example, that the degradation of flavoring chemicals in e-cigarettes to
aldehydes is statistically insignificant. It is thus important to understand
how these molecules react to afford enhanced aerosol products. The
purpose of the current study was to investigate the origin of
formaldehyde, acrolein, and acetaldehyde in e-cigarettes that contain
the popular additive, triacetin (TA). By using 13C labeling and a
combination of 1H NMR and 13C NMR, we were able to identify that
ester hydrolysis of TA occurs to form acetic acid (HOAc) during
aerosolization. The released HOAc acts as a catalyst in the degradation of
propylene glycol (PG) and glycerol (GLY), increasing the formation of
formaldehyde hemiacetals, acrolein, and acetaldehyde. A solution of 10%
TA in 1:1 PG/GLY e-liquid was aerosolized using two different e-cigarettes at two wattages. Each device exhibited a significant
increase in aldehyde levels, of up to 185% compared to the aerosol from a 1:1 PG/GLY e-liquid. In addition, the GLY
formaldehyde hemiacetal was more predominant within the presence of HOAc, indicating that GLY may be relatively more
prone to degradation from protonation.

■ INTRODUCTION

There are approximately 3 million adolescents using electronic
cigarettes (e-cigarettes) in the United States.1 Moreover, e-
cigarette usage has been reported to be a major risk factor
among youth for traditional cigarette usage.2 Flavors are well-
known to be a major contributing factor to the appeal of e-
cigarettes,3,4 particularly among young people.5,6 Among US
current e-cigarette users, 82% of young people and 70% of
older adults use flavored e-cigarette liquid (e-liquid).7 The
Food and Drug Administration (FDA) has yet to pass federal
regulation on e-liquid flavoring chemicals.8 Research is needed
to better understand the identity, levels, reactivity, and
inhalation toxicology of specific flavor compounds.
E-liquid is typically composed of a mixture of carrier

solvents, nicotine, and flavoring compounds. Many flavorings
are listed as generally recognized as safe (GRAS) by the FDA
as food additives for ingestion. However, their inhalation
toxicity is largely unknown. Despite this, some vaping industry
websites claim that e-liquids are safe for inhalation because of
their GRAS rating.9,10

In addition to the lack of inhalation toxicity data, the
chemical reactivity of the flavoring compounds used in e-
cigarettes has also not been extensively investigated. Previous
studies have shown that the aerosolization of flavored e-liquid
increases toxic aldehyde production,11 oxidative stress,12,13 and
inflammatory responses.14,15 Khlystov and Samburova com-
pared the aldehyde production of flavored e-liquid to that of

the aerosol derived from carrier e-liquid [(propylene glycol
(PG) and glycerol (GLY)]. They identified a direct relation-
ship between enhanced aldehyde levels and flavor compound
concentration.11 Others have found that different commercial
e-liquid flavoring formulations produced varying aerosol
product profiles.16,17 However, to date, apart from the
determination of sugar-derived furans in e-cigarette aerosols,18

there have been no reports focusing on how aerosol products
derive from flavoring additives. For example, it is not known if
enhanced levels of aldehydes derive directly from the flavoring
molecules themselves or if flavorings promote the degradation
of other e-liquid components such as the solvents PG/GLY.
Herein, we used 13C labeling to unambiguously determine the
origin of enhanced aldehyde levels from a relatively common e-
liquid additive, triacetin (TA), the triester of GLY (i.e., glycerin
triacetate, 1,2,3-triacetoxypropane). In addition to e-cigarette
products, TA is also found in traditional cigarettes and cigars.19

TA is mainly used to enhance the overall flavor of the e-
cigarette aerosol. It has become popular in the “do-it-yourself”
community because of its ability to lessen the “bite”.20

Manufactures are not required to report TA’s presence or
levels in e-liquids, so its abundance in e-liquids is largely
unknown. However, we found three manufacturer websites
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that do report TA (Table 1, see also Table S3 in the
Supporting Information). Importantly, some companies have
also begun to use it as a replacement solvent for PG.21

■ RESULTS AND DISCUSSION
Determination of the Aerosol Product Profiles. The

two e-cigarette devices EC1 and EC2 were chosen to represent
different coil options, namely, a sub-Ohm vertical coil (EC1)
and a horizontal coil (EC2).22 Each was tested at two battery
power settings that were chosen from self-described user
preferences (Supporting Information) that were also within the
manufacturers’ recommended ranges. In order to determine
the origin of aldehyde aerosol products from the TA-
containing e-liquid, we synthesized 13C-labeled TA from the
reaction of GLY and acetic anhydride. Compound 4 (Figure 1)

was derived from 13C-labeled GLY and compound 5 (Figure
1) from 13C-labeled acetic anhydride. The use of 13C-labeled
TA molecules allowed us to determine whether TA forms
aldehydes directly via its thermal decomposition (Scheme 1),
or if TA plays a different role.
TA has been reported23 to degrade under thermal

conditions to form acetic acid (HOAc), formaldehyde, acrolein
(2), and acetaldehyde (3), as shown in Scheme 1. The IARC
(International Agency for Research on Cancer) reports

formaldehyde as a known carcinogen and acetaldehyde as a
possible carcinogen.24 Acrolein is a notorious air pollutant. It
has been shown to cause a decrease in respiratory rates and to
cause intense eye and respiratory irritation in humans. It has
been shown to lead to inflammation, obstruction of the trachea
and bronchi, and hemorrhaging in animals.25 Previously, 1−3
have been identified in the aerosol of e-cigarettes from the
dehydration and oxidation of the e-liquid solvents.26

On the basis of the literature precedent,11,23 we anticipated
an enhanced level of aldehyde byproducts in the aerosol
derived from the flavored (i.e., TA-containing) e-liquid as
compared to the aerosol from the e-liquid composed of PG/
GLY alone. Indeed, an overlay of the 1H NMR spectra (Figure
2) of the aerosol derived from each type of e-liquid clearly

Table 1. TA Reported in Various E-Liquid Flavors

vendor
flavors which are reported

to contain TA
total flavors
available

frequency
(%)

The Flavor
Apprentice

19 443 4.3

Flavor West 24 338 7.1
Simply Flavors 51 150 34.0

Figure 1. Isotopically labeled TA. TA derived from isotopically
labeled GLY (4) and from isotopically labeled acetic anhydride (5).

Scheme 1. Two Pathways of TA-Proposed Thermal Degradationa

aTA forms acrolein, acetaldehyde, and formaldehyde. In e-cigarettes, formaldehyde further reacts with PG/GLY to form formaldehyde
hemiacetals.23,26

Figure 2. Overlay of the 1H NMR spectra of aerosolized (red) PG/
GLY e-liquid and (blue) 10% TA/PG/GLY e-liquid. The peaks of
interest that increase in height are identified by the doublet at 9.55
ppm as the aldehyde resonance of acrolein, the multiplet at 6.35 ppm
as the trans β hydrogen, doublet at 6.47 ppm as the cis β hydrogen,
and doublet at 6.625 ppm as the α hydrogen resonance of acrolein;
the quartet at 9.65 ppm as the aldehyde resonance of acetaldehyde;
and last, the overlapping triplets at 6.20 and 6.17 ppm as the hydroxyl
resonance of the primary formaldehyde hemiacetals corresponding to
PG and GLY, respectively. Chemical peak identification by the
addition of authentic standards was performed extensively and
published in our previous work.26 These spectra were obtained
using EC2 at 11 W.
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shows that the aerosol derived from the TA/PG/GLY e-liquid
contained higher levels of aldehydes 1a−b (as the form-
aldehyde hemiacetals),27 as well as 2 (acrolein) and 3
(acetaldehyde).
The aerosol levels of 1a−3 were quantified by 1H NMR,

using the internal standard 2,3,5,6-tetrachloro-4-nitrobenzene.
Concentrations were normalized by dividing by the mass of e-
liquid consumed (Supporting Information). The peaks
corresponding to compounds 1a−b were integrated together
because of their overlapping peaks. In EC1 (sub-Ohm),
compounds 1a−b were the only detectable target products by
1H NMR from aerosolized PG/GLY (Figure 3). However, the

addition of 10% TA afforded 80−162% increases in 1a−b, as
well as a detectable level of 2 in the aerosol. The relatively large
error bars observed for the EC1 results are due to the fact that
the relatively low levels of aldehydes produced were close to
the limit of detection of the NMR technique. Although sub-
Ohm devices typically produce lower concentrations of aerosol
aldehyde products, they typically deliver much greater relative
levels of PG and GLY to the user.28 The EC2 device thus
produced orders of magnitude greater levels of 1a−3 (at 11
W) as compared to EC1 (no TA added). The inclusion of 10%
TA in the EC2 e-liquid led to product increases of 185, 149,
and 173%. Using EC2 at 9 W, aerosolized PG/GLY alone
afforded no detectable levels of 1a−3. However, the addition
of 10% TA afforded 1a−b, 2, and 3 in measurable amounts of

0.09, 0.004, and 0.003 mg/g, respectively. Thus, in the case of
each e-cigarette, the e-liquids containing 10% TA exhibited a
clear trend of enhanced relative levels of aldehydes compared
to those containing only PG/GLY.

Origin of the Enhanced Product Formation. In order
to best inform manufactures, regulatory agencies, and users of
potential health risks, it is imperative to determine the sources
of increased levels of 1−3. Aerosols derived from PG/GLY
containing either 10% 13C3-TA (4) or 10% 13C6-TA (5) e-
liquids were analyzed by 1H NMR and 13C NMR. The 13C
NMR of the 10% 13C6-TA (5, acetate-labeled) aerosol displays
a prominent peak at 172 ppm corresponding to the carbonyl
peak of acetic acid. Importantly, this was the only 13C-labeled
product observed, and it was not detectable in the 10% 13C3-
TA-derived aerosol (4) spectrum. This indicates that ester
hydrolysis of TA occurs to form HOAc during aerosolization.
The formation of HOAc has the lowest energy barrier of the
initial steps in the pyrolysis pathways of TA.23,29

Importantly, the degradation of PG and GLY is well-known
to be catalyzed by acid and can lead to increased levels of 1−
3.30,31 Therefore, we can conclude that TA promotes aldehyde
formation in e-cigarettes by producing HOAc that serves as a
catalyst to enhance PG and GLY reactivity (Scheme 2). This
was confirmed by analyzing the aerosol derived from a control
e-liquid consisting of a 1:1 PG/GLY solution containing 0.5%
HOAc, the level of HOAc produced in the experiments using
the acetate-labeled TA, 5. Figure 4 reveals that the 1a−3
aerosol spectrum derived from the HOAc/PG/GLY e-liquid
exhibits enhanced 1a−3 levels, as is consistent with the
findings from the TA/PG/GLY e-liquid (Figure 2).
Finally, we found that the presence of HOAc leads to greater

production of the GLY-derived formaldehyde hemiacetal 1b as
compared to the PG formaldehyde hemiacetal 1a (Figure 4).
Protonation of GLY has been reported to significantly lower
the activation energy of its dehydration from 65−71 to 20−25
kcal mol−1. These results indicate that e-liquids containing TA
and higher GLY/PG ratios may be relatively more prone to the
enhanced production of formaldehyde and related products.

■ CONCLUSIONS

Herein, we have shown that the addition of TA to PG/GLY e-
liquid affords higher levels of formaldehyde hemiacetals (1a−
b), acrolein (2), and acetaldehyde (3) by releasing HOAc.
This occurs via HOAc formation from TA, followed by acid
catalysis of PG/GLY degradation. Although TA may be a
direct source of aldehydes, we did not observe this under the
conditions herein. One limitation of this study includes not
quantifying gaseous formaldehyde because of the method of
collection and analysis. However, our previous research has
shown that an increase in 1a−b concentration is proportional
to an increase in gaseous formaldehyde (1) production.32

Further related investigations involving additional e-liquid
formulations are currently under study in our labs.

■ METHODS

Electronic Cigarette Devices. Two devices were used for
aerosolization.

EC1. A SMOK Alien 220 W variable voltage/variable
wattage/temperature control (VV/VW/TC) battery was fitted
with a SMOK Baby containing a Q2 0.4 Ω single vertical coil.

Figure 3. Concentrations of compounds 1a−3 in the aerosolization of
PG/GLY and increased levels with the addition of 10% TA. The blue
bar represents the amount of product (mg solute/g solution
consumed) formed from aerosolized PG/GLY e-liquid. The green
bar represents the amount of products formed from aerosolized TA/
PG/GLY e-liquid. The inset displays the results from EC2 at 9 W,
expanded by 100 times. 1a, 1b, 2, and 3 represent PG formaldehyde
hemiacetal, GLY formaldehyde hemiacetal, acrolein, and acetalde-
hyde, respectively. Errors bars were calculated by one standard
deviation. The enhanced concentration of 1a−3 was significant under
all conditions except in the case of 1a−b generated by EC1 at 55 W
(see the Supporting Information).
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EC2. A SMOK Alien 220W VV/VW/TC battery was fitted
with a Kanger Protank 2 Clearomizer containing a MT32 2.2
Ω single horizontal coil.
Synthesis of 13C-Labeled TA. 13C3-GLY (Sigma-Aldrich)

was converted to C6-
13C3H14O6 (13C3-TA, 4) by acetic

anhydride and pyridine (25 °C, 22 h). Purification was
performed by column chromatography, followed by solvent
evaporation under reduced pressure to afford the liquid
product. Purity was confirmed by 1H NMR and 13C NMR.
GLY was converted to C3-

13C6H14O6 (13C6-TA, 5) by 13C4
acetic anhydride (Cambridge Isotopes) and pyridine (25 °C,
22 h). Purification was performed by column chromatography,
followed by solvent evaporation under reduced pressure to
afford the liquid product. Purity was confirmed by 1H NMR
and 13C NMR.
E-Liquid Preparation and Avoidance of Dry Coils and

Burnt E-Liquid. Each device was filled with e-liquid to the
highest level according to the manufacturers’ recommendation.
PG/GLY Solution. A 1:1 ratio (by volume, v/v %) of PG/

GLY was mixed in-house from ACS-grade PG and GLY. EC1
and EC2 were filled with a mixture of 1.0 mL PG and 1.0 mL
GLY, respectively.

10% TA Solution. A 1:1 ratio of PG/GLY (v/v %) was
mixed in-house with an addition of 10% (v/v %) ACS-grade
TA.

10% 13C3-TA (4) Solution. A 1:1 ratio of PG/GLY (v/v %)
was mixed in-house with an addition of 10% (v/v %)
synthesized 4.

10% 13C6-TA (5) Solution. A 1:1 ratio of PG/GLY (v/v %)
was mixed in-house with an addition of 10% (v/v %)
synthesized 5.
Throughout each vaping session, ample e-liquid was

maintained to cover the wicking material. After each session,
the e-liquid was replaced with a fresh solution. New coils were
also used in each session. Each device was studied at two
wattages that were within self-reported user preferences
(Supporting Information) as well as within the range of the
manufacturers’ recommendation.

Collecting the Aerosol. The e-cigarette aerosol consists of
liquid particles suspended in the gas phase.33 The aerosol
produced was passed through a dry cold trap submerged in a
dry ice/acetone bath (−76 °C ± 2 °C), followed by an
impinger of 0.6 mL DMSO-d6 connected to a CH
Technologies single cigarette smoking machine (SCSM-
STEP). Each vaping session consisted of 10 puffs. The
SCSM-STEP was set to the CORESTA program, which has a
square shape puff profile, a 3 s puff period, and a 55 mL puff
volume. In this study, the puff interval was set to 1 min to aid
cooling of the heating coils between puffs. EC1 was tested in
triplicate at 55 and 65 W. EC2 was tested in triplicate at 9 and
11 W. The aerosolization of 13C3-TA (4) e-liquid and 13C6-TA
(5) e-liquid was each performed once with EC1 at 65 W and
once with EC2 at 11 W. After each puff, DMSO-d6 from the
impinger was used to collect the aerosols that had condensed
inside the cold trap. The dissolved aerosol (0.425 mL) was
placed in a Wilmad 400 MHz NMR tube. An internal standard
was added via a 40 μL aliquot of a 10.01 mM 2,3,5,6-
tetrachloro-4-nitrobenzene solution in DMSO-d6.

Analysis by NMR. NMR spectra were obtained with a
Bruker 400 MHz AVANCE II+ spectrometer.

1H NMR. 1H NMR spectra were obtained using a 30° pulse
angle, 10 s relaxation delay, and 256 acquisitions.

13C NMR. Using a 30° pulse angle, 2 s relaxation delay, and
2048 acquisitions, 13C NMR spectra were obtained for the
sample of (i) 10% 13C3-TA (4) solution, (ii) 10% 13C6-TA (5)
solution, and (iii) 10% TA solution for EC1 at 65 W and for
EC2 at 11 W. Data were processed and analyzed using the
software, MNova.

Scheme 2. TA in E-Cigarettes Leads to HOAc Formation and Subsequent Protonation of PG/GLY To Catalyze the Formation
of Products Such as 1−3a

aThis was confirmed via the use of 13C-labeled TA as the predominant pathway observed under the conditions used herein.

Figure 4. Overlay of 1H NMR spectra of aerosolized (red) PG/GLY
e-liquid and (blue) 0.5% HOAc/PG/GLY e-liquid. The triplet at 6.20
ppm was identified as 1a. The triplet at 6.17 was identified as 1b. The
doublet at 9.55 ppm, multiplet at 6.35 ppm, doublet at 6.47 ppm, and
doublet at 6.625 ppm were identified as 2. The quartet at 9.65 ppm
was identified as 3. In the presence of HOAc there is a visible increase
in peaks corresponding to 1a−3. These spectra were obtained using
EC2 at 11 W.
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